Project Title	Funding	Strategic Plan Objective	Institution	
Integrative system biology of iPSC-induced neurons for dentifying novel drug targets	\$0	Q4.S.B	Baylor College of Medicine	
Rat knockout models of ASD	\$0	Q4.S.B	Baylor College of Medicine	
THE GENETIC AND NEUROANATOMICAL ORIGIN OF SOCIAL BEHAVIOR	\$391,250	Q4.S.B	BAYLOR COLLEGE OF MEDICINE	
Preclinical Autism Consortium for Therapeutics (PACT)- Boston Children's Hospital	\$316,301	Q4.S.B	Boston Children's Hospital	
Rebuilding Inhibition in the Autistic Brain	\$0	Q4.S.B	Brandeis University	
Mechanisms of circuit failure and treatments in patient- derived neurons in autism	\$406,250	Q4.S.B	BROWN UNIVERSITY	
Preclinical evaluation of NMDA receptor antagonists for reating Rett Syndrome	\$396,250	Q4.S.B	CASE WESTERN RESERVE UNIVERSITY	
Functional consequences of disrupted MET signaling	\$48,509	Q4.S.B	Children's Hospital Los Angeles	
A novel window into ASD through genetic targeting of striosomes - Project 1	\$82,473	Q4.S.B	Cold Spring Harbor Laboratory	
16p11.2: Defining the gene(s) responsible (grant 1)	\$210,240	Q4.S.B	Cold Spring Harbor Laboratory	
Whole Brain Mapping of the Effects of Intranasal Oxytocin in CNTNAP2 KO Mouse Model of Autism	\$30,000	Q4.Other	Cold Spring Harbor Laboratory	
Pinpointing Genes Underlying Autism in Chromosomal Region 16p11.2	\$30,000	Q4.S.B	Cold Spring Harbor Laboratory	
nvestigating the effects of chromosome 22q11.2 deletions	\$0	Q4.S.B	Columbia University	
Autism-linked TBR1 gene in learning-related synaptic plasticity	\$0	Q4.S.B	Columbia University	
Misregulation of microtubule dynamics in Autism	\$0	Q4.S.B	Drexel University	
Understanding copy number variants associated with autism	\$250,000	Q4.S.B	Duke University	
Characterization of synaptic and neural circuitry dysfunction underlying ASD-like behaviors using a novel genetic mouse model	\$15,000	Q4.S.B	Duke University	
A novel neural circuit analysis paradigm to model autism in mice	\$196,667	Q4.S.B	Duke University	
2013 Dup15q Alliance Scientific Meeting Support	\$0	Q4.S.E	Dup15q Alliance	
Characterization of the Schizophrenia-associated 3q29 Deletion in Mouse	\$477,402	Q4.S.B	Emory University	
Novel approaches to enhance social cognition by stimulating central oxytocin release	\$149,665	Q4.S.B	Emory University	
Oxytocin Receptors and Social Behavior	\$440,363	Q4.S.B	Emory University	
A NOVEL TRANSLATIONAL MODEL OF AUTISUM SPECTRUM DISORDER	\$223,125	Q4.S.B	Emory University	
Functional connectivity in monogenic mouse models of autism	\$55,260	Q4.S.B	Fondazione Istituto Italiano di Tecnologia	

Project Title	Funding	Strategic Plan Objective	Institution	
Dissecting striatal circuit dynamics during repetitive behaviors in autism	\$182,254	Q4.S.B	FundaÁ"o D. Anna de Sommer Champalimaud e Dr. Carlos Montez Champalimaud	
Optical imaging of circuit dynamics in autism models in virtual reality	\$184,781	Q4.S.B	Harvard Medical School	
Deep Phenotyping of Autism Spectrum Disorder Mice	\$216,994	Q4.S.B	Harvard University	
Analysis of oxytocin function in brain circuits processing social cues	\$62,500	Q4.S.B	Harvard University	
Prefrontal function in the Shank3-deficient rat: A first rat model for ASD	\$544,401	Q4.S.B	ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI	
Identifying therapeutic targets for autism using Shank3-deficient mice	\$486,501	Q4.S.B	ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI	
Piloting Treatment with Insulin-Like Growth Factor-1 in Phelan-McDermid Syndrome	\$289,286	Q4.L.A	ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI	
Casein Kinase 1 Inhibitors for Treatment of Autism	\$349,610	Q4.S.B	INTRA-CELLULAR THERAPIES, INC.	
Understanding brain disorders related to the 15q11.2 chromosomal region	\$125,000	Q4.S.B	Johns Hopkins University	
The role of glutamate receptor intereacting proteins in autism	\$125,000	Q4.S.B	Johns Hopkins University	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 1	\$154,145	Q4.S.B	King's College London	
A zebrafish model to identify epigenetic mechanisms relevant to autism	\$60,000	Q4.S.B	King's College London	
Functional analysis of the Schizophrenia and Autism Spectrum Disorder gene TCF4 i	\$457,500	Q4.S.B	LIEBER INSTITUTE, INC.	
The tissue-specific transcriptome anatomy of 16p11.2 microdeletion syndrome	\$60,000	Q4.S.B	Massachusetts General Hospital	
Molecular consequences of strong effect ASD mutations including 16p11.2	\$125,000	Q4.S.B	Massachusetts General Hospital	
Synaptic pathophysiology of 16p11.2 model mice	\$125,000	Q4.S.B	Massachusetts Institute of Technology	
Neural and cognitive mechanisms of autism	\$0	Q4.S.B	Massachusetts Institute of Technology	
The role of PTCHD1 in thalamic reticular nucleus function and ASD	\$125,000	Q4.S.B	Massachusetts Institute of Technology	
A novel window into ASD through genetic targeting of striosomes - Core	\$83,764	Q4.S.B	Massachusetts Institute of Technology	
GABA-A receptor subtypes as therapeutic targets in autism	\$60,000	Q4.Other	MCLEAN HOSPITAL	
dentifying high-impact therapeutic targets for autism spectrum disorders using rat models	\$0	Q4.S.B	Mount Sinai School of Medicine	
Roles of Oxytocin and Vasopressin in Brain	\$1,947,833	Q4.S.B	National Institutes of Health	
Studies of genetic and metabolic disorders, autism and premature aging	\$157,328	Q4.S.B	National Institutes of Health	

Project Title	Funding	Strategic Plan Objective	Institution
Regulation of Neuroligins and Effects on Synapse Number and Function	\$759,674	Q4.S.B	National Institutes of Health
Cerebellar signaling in mouse models of autism	\$0	Q4.S.B	NORTHWESTERN UNIVERSITY
Mechanisms of stress-enhanced aversive conditioning	\$381,250	Q4.S.B	NORTHWESTERN UNIVERSITY
Vicarious Neural Activity, Genetic Differences and Social Fear Learning	\$56,978	Q4.S.B	Oregon Health & Science University
Role of the CUL3-mediated ubiquitination pathway in autism	\$59,340	Q4.S.B	Portland State University
PsychoGenics Inc.	\$218,567	Q4.S.B	PsychoGenics Inc.
Rapid drug discovery in genetic models of autism	\$59,834	Q4.S.B	Research Center of Centre hospitalier de l'UniversitÈ de MontrÈal
A mouse model of top-down interactions	\$100,000	Q4.S.B	Rockefeller University
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$0	Q4.S.B	Salk Institute for Biological Studies
Behavioral evaluation of a novel autism mouse model	\$30,000	Q4.S.B	Shriners Hospitals for Children - Northern California
Neuroligin function in the prefrontal cortex and autism pathogenesis	\$125,000	Q4.S.B	Stanford University
16p11.2 deletion mice: Autism-relevant phenotypes and treatment discovery	\$200,000	Q4.S.B	Stanford University
Biomarker discovery for low sociability: A monkey model	\$125,000	Q4.S.B	Stanford University
Neural mechanisms of social reward in mouse models of autism	\$124,997	Q4.S.B	Stanford University
Chromatin remodeling in autism	\$125,000	Q4.S.B	Stanford University
Disruption of Cortical Projection Neurons, Circuits, and Cognition in ASD	\$120,953	Q4.S.B	The George Washington University
Deficits in tonic inhibition and the pathology of autism spectrum disorders	\$0	Q4.S.B	Tufts University
Circuit-level developmental and functional dynamics in an ASD genetic model	\$60,000	Q4.S.B	Univeristy of Queensland
Reversing BDNF Impairments in Rett Mice with TRPC Channel Activators	\$142,398	Q4.S.B	UNIVERSITY OF ALABAMA AT BIRMINGHAM
How do autism-related mutations affect basal ganglia function?	\$62,500	Q4.S.B	University of California, Berkeley
Preclinical Autism Consortium for Therapeutics (PACT)	\$389,677	Q4.S.B	University of California, Davis
Characterization of brain and behavior in 7q11.23 duplication syndrome-Project 1	\$90,696	Q4.S.B	University of California, Davis
16p11.2 deletion mice: autism-relevant phenotypes and treatment discovery	\$200,000	Q4.S.B	University of California, Davis
Effects of Chronic Intranasal Oxytocin	\$1,103,903	Q4.S.B	University of California, Davis

Project Title	Funding	Strategic Plan Objective	Institution
Effects of Chronic Intranasal Oxytocin	\$125,448	Q4.S.B	University of California, Davis
Role of Caspr2 (CNTNAP2) in brain circuits - Project 2	\$159,168	Q4.S.B	University of California, Los Angeles
Mechanism and treatment of ASD related behavior in the Cntnap2 knockout mouse model	\$0	Q4.S.B	University of California, Los Angeles
Exploring VIPR2 microduplication linkages to autism in a mouse model	\$0	Q4.S.B	University of California, Los Angeles
inking cortical circuit dysfunction and abnormal pehavior in genetic mouse models of autism	\$258,358	Q4.S.B	University of California, Los Angeles
nvestigating Wnt signaling variants in mouse models of ASD	\$60,000	Q4.S.B	University of California, San Francisco
nvestigations of a Proposed Molecular Feedback Loop n Cortical Neurons in Psychiatric Pathogenesis	\$25,000	Q4.S.B	University of California, San Francisco
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$0	Q4.S.B	University of California, San Francisco
Microcircuit endophenotypes for autism	\$62,500	Q4.S.B	University of California, San Francisco
In vivo approach to screen ASD allele functions in cortical interneurons	\$62,500	Q4.S.B	University of California, San Francisco
The Role of Cation/Proton Exchanger NHE9 in Autism	\$62,500	Q4.S.B	University of California, San Francisco
CHD8 and beta-catenin signaling in autism	\$62,500	Q4.S.B	University of Chicago
Stable Zebrafish Models of Autism Spectrum Disorder	\$75,250	Q4.S.B	University of Miami
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina
Small-molecule compounds for treating autism spectrum disorders	\$0	Q4.S.B	University of North Carolina
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina
Effects of oxytocin receptor agonists in mouse models of autism spectrum disorder phenotypes	\$0	Q4.S.B	University of North Carolina
Examination of the mGluR-mTOR pathway for the dentification of potential therapeutic targets to treat ragile X	\$0	Q4.S.B	University of Pennsylvania
Comprehensive Phenotyping of Autism Mouse Models	\$58,713	Q4.S.B	University of Pennsylvania
Animal Model of Speech Sound Processing in Autism	\$251,777	Q4.S.B	UNIVERSITY OF TEXAS DALLAS
Novel therapeutic targets to treat social behavior deficits n autism and related disorders	\$0	Q4.S.B	University of Texas Health Science Center, San Antonio
Preclinical therapeutic target validation of glutamate eceptors in Shank3 models of autism	\$0	Q4.S.B	University of Texas Southwestern Medical Center

Project Title	Funding	Strategic Plan Objective	Institution
Temporally controlled genetic rescue of Shank3 autism model	\$0	Q4.S.B	University of Texas Southwestern Medical Center
Characterization of brain and behavior in 7q11.23 duplication syndrome-Core	\$164,326	Q4.S.B University of Toronto	
Novel Genetic Models of Autism	\$328,415	Q4.S.B	UT SOUTHWESTERN MEDICAL CENTER
Striatal synaptic Abnormalities in Models of Autism	\$397,500	Q4.S.B	UT SOUTHWESTERN MEDICAL CENTER
Modeling The Serotonin Contribution to Autism Spectrum Disorders	\$229,702	Q4.S.B	Vanderbilt University
Neurobiological Signatures of Social Dysfunction and Repetitive Behavior	\$390,000	Q4.S.B	Vanderbilt University
Evaluating hyperserotonemia as a biomarker of sensory dysfunction in autism spectrum disorder	\$0	Q4.S.B	Vanderbilt University
Role of Caspr2 (CNTNAP2) in brain circuits- Core	\$89,999	Q4.S.B	Weizmann Institute of Science
Functional Analysis of Rare Variants in Genes Associated with Autism	\$146,625	Q4.S.B	Yale University